Bipolar cells, like receptors and horizontal cells, do not fire impulses, but we still speak of an on response, meaning a depolarization to light and therefore increased transmitter release from the cell's terminals, and an off response, to imply hyperpolarization and decreased release. For the off- center bipolars the synapses from the receptors must be excitatory, because the receptors themselves are turned off (hyperpolarized) by light; for the on-center bipolars the synapses must be inhibitory. To see why (if you, like me, find this confusing), you need only think about the effects of a small spot of light. Receptors are active in the dark: light hyperpolarizes them, turning them off. If the synapse is excitatory, the bipolar will have been activated in the dark, and will likewise be turned off by the stimulus. If the synapse is inhibitory, the bipolar will have been suppressed in the dark, and the light, by turning off the receptor, will relieve the suppression of the bipolar cell- -that is, the bipolar cell will be activated. (No one said this would be easy.) Whether the receptor-to- bipolar synapse is excitatory or inhibitory could depend on either the transmitter the receptor releases or the nature of the channels in the bipolar cell's postsynaptic membrane. At present no one thinks that one receptor releases two transmitters, and much evidence favors the idea that the two biolar types have different receptor molecules. Before we discuss where the receptive-field surrounds of the bipolar cells come from, we have to consider the horizontal cells. Horizontal cells are important because they are probably at least in part responsible for the receptive- field surrounds of retinal ganglion cells; they represent the part of the indirect pathway about which we know the most. They are large cells, and among the strangest in the nervous system. Their processes make close contact with the terminals of many photoreceptors distributed over an area that is wide compared with the area directly feeding a single bipolar cell. Every receptor contacts both types of second-order cell, bipolar and horizontal. Horizontal cells come in several subtypes and can differ greatly from species to species; their most unusual feature, which they share with amacrine cells, is their lack of anything that looks like an ordinary axon. From the slightly simplified account of nerve cells given in the last chapter you may rightly wonder how a nerve without an axon could transmit information to other neurons. When the electron microscope began to be used in neuroanatomy, we soon realized that dendrites can, in some cases, be presynaptic, making synapses onto other neurons, usually onto their dendrites. (For that matter, axon terminals can sometimes be postsynaptic, with other axons ending on them.) The processes that come off the cell bodies of horizontal cells and amacrine cells apparently serve the functions of both axons and dendrites.